品牌
生产厂家厂商性质
上海市所在地
超低频高压发生器试验原理
超低频绝缘耐压试验实际上是工频耐压试验的一种替代方法。我们知道,在对大型发电机、电缆等试品进行工频耐压试验时,由于它们的绝缘层呈现较大的电容量,所以需要很大容量的试验变压器或谐振变压器。这样一些巨大的设备,不但笨重,造价高,而且使用十分不便。为了解决这一矛盾,电力部门采用了降低试验频率,从而降低了试验电源的容量。从国内外多年的理论和实践证明,用0.1Hz超低频耐压试验替代工频耐压试验,不但能有同样的等效性,而且设备的体积大为缩小,重量大为减轻 ,理论上容量约为工频的五百分之一,且操作简单,与工频试验相比*性更多。这就是为什么发达国家普遍采用这一方法的原因。国家*已制定了《35kV及以下交联聚乙烯绝缘电力电缆超低频(0.1Hz)耐压试验方法》行业标准。我国正在推广这一方法,本仪器是根据我国这一需要研制而成的。可广泛用于电缆、大型高压旋转电机的交流耐压试验之中。
超低频高压发生器产品简介
本产品接合了现代数字变频*技术,采用微机控制,升压、降压、测量、保护*自动化。由于全电子化,所以体积小重量轻、大屏幕液晶显示,清晰直观、且能显示输出波形、打印试验报告。设计指标*符合《电力设备测试仪器通用技术条件,第4部分:通用技术条件》电力行业标准,使用十分方便。现在国内外均采用机械式的办法进行调制和解调产生超低频信号,所以存在正弦波波形不标准,测量误差大,高压部分有火花放电,设备笨重,而且正弦波的二,四象限还需要大功率高压电阻进行放电整形,所以设备的整体功耗较大。本产品均能克服这样一些不足之处,另外,还有如下特点需要特别说明:
1.电流、电压、波形数据均直接从高压侧采样获得,所以数据准确。
2.具有过压保护功能,当输出超过所设定的限压值时,仪器将停机保护,动作时间小于20ms。
3.具有过流保护功能:设计为高低压双重保护,高压侧可按设定值进行精确停机保护;低压侧的电流超过额定电流时将进行停机保护,动作时间都小于20ms。
4.高压输出保护电阻设计在升压体内,所以外面不需另接保护电阻。
5.由于采用了高低压闭环负反馈控制电路,所以输出无容升效应。
技术参数
1.输出额定电压:参见表1
2.输出频率:0.1Hz、0.05Hz、0.02Hz
3.带载能力: 0.1Hz zui大1.1µF
0.05Hz zui大2.2µF
0.02Hz zui大5.5µF
4.测量精度:3%
5.电压正,负峰值误差:≤3%
6.电压波形失真度:≤5%
7.使用条件:户内、户外;温度:-10℃~+40℃;湿度:≤85%RH
8.电源保险管:参见表1
9.市电源:频率50Hz,电压220V±5%。若使用便携式发电机供电,发电机要求:频率50Hz,电压220V±5%,功率应大于3KW,并且在发电机的输出端并联一只功率不小于800W的阻性负载(如电炉),以便稳定发电机的运转速度。否则仪器将不能正常工作。
技术参数
型号 | 额定电压 | 带载能力 | 重量 | 用途 |
VLF-30 | 30kV (峰值) | 0.1Hz,≤1.1µF | 控制器:4㎏ 升压体:25㎏ 尺 寸:长*宽*高 323*174*323 | 10kV电缆、发电机等 |
0.05Hz,≤2.2µF | ||||
0.02Hz,≤5.5µF | ||||
VLF-40 | 40kV (峰值) | 0.1Hz,≤1.1µF | 控制器:5㎏ 升压体:30㎏ 尺 寸:长*宽*高 357*208*343 | 13.8kV电缆、发电机等 |
0.05Hz,≤2.2µF | ||||
0.02Hz,≤5.5µF | ||||
VLF-50 | 50kV (峰值) | 0.1Hz,≤1.1µF | 控制器:6㎏ 升压体:45㎏ 尺 寸:长*宽*高 357*210*365 | 15.75kV电缆、发电机等 |
0.05Hz,≤2.2µF | ||||
0.02Hz,≤5.5µF | ||||
VLF-60 | 60kV (峰值) | 0.1Hz,≤1.1µF | 控制器:6㎏ 升压体:50㎏ 尺 寸:长*宽*高 357*220*370 | 18kV电缆、发电机等 |
0.05Hz,≤2.2µF | ||||
0.02Hz,≤5.5µF | ||||
VLF- 80 | 80kV (峰值)
| 0.1Hz,≤1.1µF | 控制器:8㎏ 升压体:90㎏ 尺 寸:长*宽*高 357*240*390 | 35kV电缆、发电机等 |
0.05Hz,≤2.2µF | ||||
0.02Hz,≤5.5µF | ||||
VLF- 90 | 90kV (峰值)
| 0.1Hz,≤1.1µF | 控制器:8㎏ 升压体:110㎏ 尺 寸:长*宽*高 357*240*390 | 35kV电缆、发电机等 |
0.05Hz,≤2.2µF | ||||
0.02Hz,≤5.5µF |